PyTorch训练代码模板
从参数定义,到网络模型定义,再到训练步骤,验证步骤,测试步骤,总结了一套较为直观的模板。目录如下:
- 导入包以及设置随机种子
- 以类的方式定义超参数
- 定义自己的模型
- 定义早停类(此步骤可以省略)
- 定义自己的数据集Dataset,DataLoader
- 实例化模型,设置loss,优化器等
- 开始训练以及调整lr
- 绘图
- 预测
一、导入包以及设置随机种子
import numpy as np
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import random
seed = 42
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
二、以类的方式定义超参数
class argparse():
pass
args = argparse()
args.epochs, args.learning_rate, args.patience = [30, 0.001, 4]
args.hidden_size, args.input_size= [40, 30]
args.device, = [torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),]
三、定义自己的模型
class Your_model(nn.Module):
def __init__(self):
super(Your_model, self).__init__()
pass
def forward(self,x):
pass
return x
四、定义早停类(此步骤可以省略)
class EarlyStopping():
def __init__(self,patience=7,verbose=False,delta=0):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self,val_loss,model,path):
print("val_loss={}".format(val_loss))
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss,model,path)
elif score < self.best_score+self.delta:
self.counter+=1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter>=self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss,model,path)
self.counter = 0
def save_checkpoint(self,val_loss,model,path):
if self.verbose:
print(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), path+'/'+'model_checkpoint.pth')
self.val_loss_min = val_loss
五、定义自己的数据集Dataset,DataLoader
class Dataset_name(Dataset):
def __init__(self, flag='train'):
assert flag in ['train', 'test', 'valid']
self.flag = flag
self.__load_data__()
def __getitem__(self, index):
pass
def __len__(self):
pass
def __load_data__(self, csv_paths: list):
pass
print(
"train_X.shape:{}\ntrain_Y.shape:{}\nvalid_X.shape:{}\nvalid_Y.shape:{}\n"
.format(self.train_X.shape, self.train_Y.shape, self.valid_X.shape, self.valid_Y.shape))
train_dataset = Dataset_name(flag='train')
train_dataloader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
valid_dataset = Dataset_name(flag='valid')
valid_dataloader = DataLoader(dataset=valid_dataset, batch_size=64, shuffle=True)
六、实例化模型,设置loss,优化器等
model = Your_model().to(args.device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(Your_model.parameters(),lr=args.learning_rate)
train_loss = []
valid_loss = []
train_epochs_loss = []
valid_epochs_loss = []
early_stopping = EarlyStopping(patience=args.patience,verbose=True)
七、开始训练以及调整lr
for epoch in range(args.epochs):
Your_model.train()
train_epoch_loss = []
for idx,(data_x,data_y) in enumerate(train_dataloader,0):
data_x = data_x.to(torch.float32).to(args.device)
data_y = data_y.to(torch.float32).to(args.device)
outputs = Your_model(data_x)
optimizer.zero_grad()
loss = criterion(data_y,outputs)
loss.backward()
optimizer.step()
train_epoch_loss.append(loss.item())
train_loss.append(loss.item())
if idx%(len(train_dataloader)//2)==0:
print("epoch={}/{},{}/{}of train, loss={}".format(
epoch, args.epochs, idx, len(train_dataloader),loss.item()))
train_epochs_loss.append(np.average(train_epoch_loss))
#=====================valid============================
Your_model.eval()
valid_epoch_loss = []
for idx,(data_x,data_y) in enumerate(valid_dataloader,0):
data_x = data_x.to(torch.float32).to(args.device)
data_y = data_y.to(torch.float32).to(args.device)
outputs = Your_model(data_x)
loss = criterion(outputs,data_y)
valid_epoch_loss.append(loss.item())
valid_loss.append(loss.item())
valid_epochs_loss.append(np.average(valid_epoch_loss))
#==================early stopping======================
early_stopping(valid_epochs_loss[-1],model=Your_model,path=r'c:\\your_model_to_save')
if early_stopping.early_stop:
print("Early stopping")
break
#====================adjust lr========================
lr_adjust = {
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6,
10: 5e-7, 15: 1e-7, 20: 5e-8
}
if epoch in lr_adjust.keys():
lr = lr_adjust[epoch]
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('Updating learning rate to {}'.format(lr))
八、绘图
plt.figure(figsize=(12,4))
plt.subplot(121)
plt.plot(train_loss[:])
plt.title("train_loss")
plt.subplot(122)
plt.plot(train_epochs_loss[1:],'-o',label="train_loss")
plt.plot(valid_epochs_loss[1:],'-o',label="valid_loss")
plt.title("epochs_loss")
plt.legend()
plt.show()
九、预测
# 此处可定义一个预测集的Dataloader。也可以直接将你的预测数据reshape,添加batch_size=1
Your_model.eval()
predict = Your_model(data)
PyTorch 常用代码段
1. 基本配置
导入包和版本查询
import torch
import torch.nn as nn
import torchvision
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
print(torch.cuda.get_device_name(0))
可复现性
在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
显卡设置
如果只需要一张显卡
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
如果需要指定多张显卡,比如0,1号显卡。
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
也可以在命令行运行代码时设置显卡:
CUDA_VISIBLE_DEVICES=0,1 python train.py
清除显存
torch.cuda.empty_cache()
也可以使用在命令行重置GPU的指令
nvidia-smi --gpu-reset -i [gpu_id]
2. 张量(Tensor)处理
张量的数据类型
PyTorch有10种CPU张量类型和10种GPU张量类型。
Data type | dtype | CPU tensor | GPU tensor |
---|---|---|---|
32-bit floating point | torch.float32 or torch.float |
torch.FloatTensor |
torch.cuda.FloatTensor |
64-bit floating point | torch.float64 or torch.double |
torch.DoubleTensor |
torch.cuda.DoubleTensor |
16-bit floating point | torch.float16 or torch.half |
torch.HalfTensor |
torch.cuda.HalfTensor |
16-bit floating point | torch.bfloat16 |
torch.BFloat16Tensor |
torch.cuda.BFloat16Tensor |
32-bit complex | torch.complex32 |
||
64-bit complex | torch.complex64 |
||
128-bit complex | torch.complex128 or torch.cdouble |
||
8-bit integer (unsigned) | torch.uint8 |
torch.ByteTensor |
torch.cuda.ByteTensor |
8-bit integer (signed) | torch.int8 |
torch.CharTensor |
torch.cuda.CharTensor |
16-bit integer (signed) | torch.int16 or torch.short |
torch.ShortTensor |
torch.cuda.ShortTensor |
32-bit integer (signed) | torch.int32 or torch.int |
torch.IntTensor |
torch.cuda.IntTensor |
64-bit integer (signed) | torch.int64 or torch.long |
torch.LongTensor |
torch.cuda.LongTensor |
Boolean | torch.bool |
torch.BoolTensor |
torch.cuda.BoolTensor |
quantized 8-bit integer (unsigned) | torch.quint8 |
torch.ByteTensor |
/ |
quantized 8-bit integer (signed) | torch.qint8 |
torch.CharTensor |
/ |
quantized 32-bit integer (signed) | torch.qfint32 |
torch.IntTensor |
/ |
quantized 4-bit integer (unsigned) | torch.quint4x2 |
torch.ByteTensor |
/ |
张量基本信息
tensor = torch.randn(3,4,5)
print(tensor.type()) # 数据类型
print(tensor.size()) # 张量的shape,是个元组
print(tensor.dim()) # 维度的数量
命名张量
张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。
# 在PyTorch 1.3之前,需要使用注释
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)
# PyTorch 1.3之后
NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C')
images.select('C', index=0)
# 也可以这么设置
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
# 使用align_to可以对维度方便地排序
tensor = tensor.align_to('N', 'C', 'H', 'W')
数据类型转换
# 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor
torch.set_default_tensor_type(torch.FloatTensor)
# 类型转换
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()
torch.Tensor与np.ndarray转换
除了CharTensor,其他所有CPU上的张量都支持转换为numpy格式然后再转换回来。
ndarray = tensor.cpu().numpy()
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.
Torch.tensor与PIL.Image转换
# pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化
# torch.Tensor -> PIL.Image
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way
# PIL.Image -> torch.Tensor
path = r'./figure.jpg'
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way
np.ndarray与PIL.Image的转换
image = PIL.Image.fromarray(ndarray.astype(np.uint8))
ndarray = np.asarray(PIL.Image.open(path))
从只包含一个元素的张量中提取值
value = torch.rand(1).item()
张量形变
# 在将卷积层输入全连接层的情况下通常需要对张量做形变处理,
# 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。
tensor = torch.rand(2,3,4)
shape = (6, 4)
tensor = torch.reshape(tensor, shape)
打乱顺序
tensor = tensor[torch.randperm(tensor.size(0))] # 打乱第一个维度
水平翻转
# pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现
# 假设张量的维度为[N, D, H, W].
tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]
复制张量
# Operation | New/Shared memory | Still in computation graph |
tensor.clone() # | New | Yes |
tensor.detach() # | Shared | No |
tensor.detach.clone()() # | New | No |
张量拼接
'''
注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,
而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,
而torch.stack的结果是3x10x5的张量。
'''
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)
将整数标签转为one-hot编码
# pytorch的标记默认从0开始
tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
得到非零元素
torch.nonzero(tensor) # index of non-zero elements
torch.nonzero(tensor==0) # index of zero elements
torch.nonzero(tensor).size(0) # number of non-zero elements
torch.nonzero(tensor == 0).size(0) # number of zero elements
判断两个张量相等
torch.allclose(tensor1, tensor2) # float tensor
torch.equal(tensor1, tensor2) # int tensor
张量扩展
# Expand tensor of shape 64*512 to shape 64*512*7*7.
tensor = torch.rand(64,512)
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
矩阵乘法
# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
result = torch.mm(tensor1, tensor2)
# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
result = torch.bmm(tensor1, tensor2)
# Element-wise multiplication.
result = tensor1 * tensor2
计算两组数据之间的两两欧式距离
利用broadcast机制
dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))
3. 模型定义和操作
一个简单两层卷积网络的示例
# convolutional neural network (2 convolutional layers)
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
model = ConvNet(num_classes).to(device)
卷积层的计算和展示可以用这个网站辅助。
双线性汇合(bilinear pooling)
X = torch.reshape(N, D, H * W) # Assume X has shape N*D*H*W
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W) # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D * D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5) # Signed-sqrt normalization
X = torch.nn.functional.normalize(X) # L2 normalization
多卡同步 BN(Batch normalization)
当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。
sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
将已有网络的所有BN层改为同步BN层
def convertBNtoSyncBN(module, process_group=None):
'''Recursively replace all BN layers to SyncBN layer.
Args:
module[torch.nn.Module]. Network
'''
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum,
module.affine, module.track_running_stats, process_group)
sync_bn.running_mean = module.running_mean
sync_bn.running_var = module.running_var
if module.affine:
sync_bn.weight = module.weight.clone().detach()
sync_bn.bias = module.bias.clone().detach()
return sync_bn
else:
for name, child_module in module.named_children():
setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))
return module
类似 BN 滑动平均
如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。
class BN(torch.nn.Module)
def __init__(self):
...
self.register_buffer('running_mean', torch.zeros(num_features))
def forward(self, X):
...
self.running_mean += momentum * (current - self.running_mean)
计算模型整体参数量
num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())
查看网络中的参数
可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数)
params = list(model.named_parameters())
(name, param) = params[28]
print(name)
print(param.grad)
print('-------------------------------------------------')
(name2, param2) = params[29]
print(name2)
print(param2.grad)
print('----------------------------------------------------')
(name1, param1) = params[30]
print(name1)
print(param1.grad)
模型可视化(使用pytorchviz)
类似 Keras 的 model.summary() 输出模型信息(使用pytorch-summary )
模型权重初始化
注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。
# Common practise for initialization.
for layer in model.modules():
if isinstance(layer, torch.nn.Conv2d):
torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
nonlinearity='relu')
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, val=0.0)
elif isinstance(layer, torch.nn.BatchNorm2d):
torch.nn.init.constant_(layer.weight, val=1.0)
torch.nn.init.constant_(layer.bias, val=0.0)
elif isinstance(layer, torch.nn.Linear):
torch.nn.init.xavier_normal_(layer.weight)
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, val=0.0)
# Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)
提取模型中的某一层
modules()会返回模型中所有模块的迭代器,它能够访问到最内层,比如self.layer1.conv1这个模块,还有一个与它们相对应的是name_children()属性以及named_modules(),这两个不仅会返回模块的迭代器,还会返回网络层的名字。
# 取模型中的前两层
new_model = nn.Sequential(*list(model.children())[:2]
# 如果希望提取出模型中的所有卷积层,可以像下面这样操作:
for layer in model.named_modules():
if isinstance(layer[1],nn.Conv2d):
conv_model.add_module(layer[0],layer[1])
部分层使用预训练模型
注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是
model.load_state_dict(torch.load('model.pth'), strict=False)
将在 GPU 保存的模型加载到 CPU
model.load_state_dict(torch.load('model.pth', map_location='cpu'))
4. 数据处理
计算数据集的均值和标准差
import os
import cv2
import numpy as np
from torch.utils.data import Dataset
from PIL import Image
def compute_mean_and_std(dataset):
# 输入PyTorch的dataset,输出均值和标准差
mean_r = 0
mean_g = 0
mean_b = 0
for img, _ in dataset:
img = np.asarray(img) # change PIL Image to numpy array
mean_b += np.mean(img[:, :, 0])
mean_g += np.mean(img[:, :, 1])
mean_r += np.mean(img[:, :, 2])
mean_b /= len(dataset)
mean_g /= len(dataset)
mean_r /= len(dataset)
diff_r = 0
diff_g = 0
diff_b = 0
N = 0
for img, _ in dataset:
img = np.asarray(img)
diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))
diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))
diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))
N += np.prod(img[:, :, 0].shape)
std_b = np.sqrt(diff_b / N)
std_g = np.sqrt(diff_g / N)
std_r = np.sqrt(diff_r / N)
mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)
std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)
return mean, std
得到视频数据基本信息
import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()
TSN 每段(segment)采样一帧视频
K = self._num_segments
if is_train:
if num_frames > K:
# Random index for each segment.
frame_indices = torch.randint(
high=num_frames // K, size=(K,), dtype=torch.long)
frame_indices += num_frames // K * torch.arange(K)
else:
frame_indices = torch.randint(
high=num_frames, size=(K - num_frames,), dtype=torch.long)
frame_indices = torch.sort(torch.cat((
torch.arange(num_frames), frame_indices)))[0]
else:
if num_frames > K:
# Middle index for each segment.
frame_indices = num_frames / K // 2
frame_indices += num_frames // K * torch.arange(K)
else:
frame_indices = torch.sort(torch.cat((
torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]
常用训练和验证数据预处理
其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。
train_transform = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(size=224,
scale=(0.08, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
val_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
5. 模型训练和测试
分类模型训练代码
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i ,(images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimizer
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
分类模型测试代码
# Test the model
model.eval() # eval mode(batch norm uses moving mean/variance
#instead of mini-batch mean/variance)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test accuracy of the model on the 10000 test images: {} %'
.format(100 * correct / total))
自定义loss
继承torch.nn.Module类写自己的loss。
pythonclass MyLoss(torch.nn.Moudle):
def __init__(self):
super(MyLoss, self).__init__()
def forward(self, x, y):
loss = torch.mean((x - y) ** 2)
return losspython
标签平滑(label smoothing)
写一个label_smoothing.py的文件,然后在训练代码里引用,用LSR代替交叉熵损失即可。label_smoothing.py内容如下:
import torch
import torch.nn as nn
class LSR(nn.Module):
def __init__(self, e=0.1, reduction='mean'):
super().__init__()
self.log_softmax = nn.LogSoftmax(dim=1)
self.e = e
self.reduction = reduction
def _one_hot(self, labels, classes, value=1):
"""
Convert labels to one hot vectors
Args:
labels: torch tensor in format [label1, label2, label3, ...]
classes: int, number of classes
value: label value in one hot vector, default to 1
Returns:
return one hot format labels in shape [batchsize, classes]
"""
one_hot = torch.zeros(labels.size(0), classes)
#labels and value_added size must match
labels = labels.view(labels.size(0), -1)
value_added = torch.Tensor(labels.size(0), 1).fill_(value)
value_added = value_added.to(labels.device)
one_hot = one_hot.to(labels.device)
one_hot.scatter_add_(1, labels, value_added)
return one_hot
def _smooth_label(self, target, length, smooth_factor):
"""convert targets to one-hot format, and smooth
them.
Args:
target: target in form with [label1, label2, label_batchsize]
length: length of one-hot format(number of classes)
smooth_factor: smooth factor for label smooth
Returns:
smoothed labels in one hot format
"""
one_hot = self._one_hot(target, length, value=1 - smooth_factor)
one_hot += smooth_factor / (length - 1)
return one_hot.to(target.device)
def forward(self, x, target):
if x.size(0) != target.size(0):
raise ValueError('Expected input batchsize ({}) to match target batch_size({})'
.format(x.size(0), target.size(0)))
if x.dim() < 2:
raise ValueError('Expected input tensor to have least 2 dimensions(got {})'
.format(x.size(0)))
if x.dim() != 2:
raise ValueError('Only 2 dimension tensor are implemented, (got {})'
.format(x.size()))
smoothed_target = self._smooth_label(target, x.size(1), self.e)
x = self.log_softmax(x)
loss = torch.sum(- x * smoothed_target, dim=1)
if self.reduction == 'none':
return loss
elif self.reduction == 'sum':
return torch.sum(loss)
elif self.reduction == 'mean':
return torch.mean(loss)
else:
raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')
或者直接在训练文件里做label smoothing
for images, labels in train_loader:
images, labels = images.cuda(), labels.cuda()
N = labels.size(0)
# C is the number of classes.
smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
score = model(images)
log_prob = torch.nn.functional.log_softmax(score, dim=1)
loss = -torch.sum(log_prob * smoothed_labels) / N
optimizer.zero_grad()
loss.backward()
optimizer.step()
Mixup训练
beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:
images, labels = images.cuda(), labels.cuda()
# Mixup images and labels.
lambda_ = beta_distribution.sample([]).item()
index = torch.randperm(images.size(0)).cuda()
mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
label_a, label_b = labels, labels[index]
# Mixup loss.
scores = model(mixed_images)
loss = (lambda_ * loss_function(scores, label_a)
+ (1 - lambda_) * loss_function(scores, label_b))
optimizer.zero_grad()
loss.backward()
optimizer.step()
L1 正则化
l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ... # Standard cross-entropy loss
for param in model.parameters():
loss += torch.sum(torch.abs(param))
loss.backward()
不对偏置项进行权重衰减(weight decay)
pytorch里的weight decay相当于l2正则
bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},
{'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
梯度裁剪(gradient clipping)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)
得到当前学习率
# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']
# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
all_lr.append(param_group['lr'])
另一种方法,在一个batch训练代码里,当前的lr是optimizer.param_groups[0][‘lr’]
学习率衰减
# Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):
train(...)
val(...)
scheduler.step(val_acc)
# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
scheduler.step()
train(...)
val(...)
# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
scheduler.step()
train(...)
val(...)
优化器链式更新
从1.4版本开始,torch.optim.lr_scheduler 支持链式更新(chaining),即用户可以定义两个 schedulers,并交替在训练中使用。
import torch
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR, StepLR
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler1 = ExponentialLR(optimizer, gamma=0.9)
scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)
for epoch in range(4):
print(epoch, scheduler2.get_last_lr()[0])
optimizer.step()
scheduler1.step()
scheduler2.step()
模型训练可视化
PyTorch可以使用tensorboard来可视化训练过程。
安装和运行TensorBoard。
pip install tensorboard
tensorboard --logdir=runs
使用SummaryWriter类来收集和可视化相应的数据,放了方便查看,可以使用不同的文件夹,比如’Loss/train’和’Loss/test’。
from torch.utils.tensorboard import SummaryWriter
import numpy as np
writer = SummaryWriter()
for n_iter in range(100):
writer.add_scalar('Loss/train', np.random.random(), n_iter)
writer.add_scalar('Loss/test', np.random.random(), n_iter)
writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
保存与加载断点
注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。
start_epoch = 0
# Load checkpoint.
if resume: # resume为参数,第一次训练时设为0,中断再训练时设为1
model_path = os.path.join('model', 'best_checkpoint.pth.tar')
assert os.path.isfile(model_path)
checkpoint = torch.load(model_path)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print('Load checkpoint at epoch {}.'.format(start_epoch))
print('Best accuracy so far {}.'.format(best_acc))
# Train the model
for epoch in range(start_epoch, num_epochs):
...
# Test the model
...
# save checkpoint
is_best = current_acc > best_acc
best_acc = max(current_acc, best_acc)
checkpoint = {
'best_acc': best_acc,
'epoch': epoch + 1,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
model_path = os.path.join('model', 'checkpoint.pth.tar')
best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')
torch.save(checkpoint, model_path)
if is_best:
shutil.copy(model_path, best_model_path)
提取 ImageNet 预训练模型某层的卷积特征
# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(
list(model.named_children())[:-1]))
with torch.no_grad():
model.eval()
conv_representation = model(image)
提取 ImageNet 预训练模型多层的卷积特征
class FeatureExtractor(torch.nn.Module):
"""Helper class to extract several convolution features from the given
pre-trained model.
Attributes:
_model, torch.nn.Module.
_layers_to_extract, list<str> or set<str>
Example:
>>> model = torchvision.models.resnet152(pretrained=True)
>>> model = torch.nn.Sequential(collections.OrderedDict(
list(model.named_children())[:-1]))
>>> conv_representation = FeatureExtractor(
pretrained_model=model,
layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
"""
def __init__(self, pretrained_model, layers_to_extract):
torch.nn.Module.__init__(self)
self._model = pretrained_model
self._model.eval()
self._layers_to_extract = set(layers_to_extract)
def forward(self, x):
with torch.no_grad():
conv_representation = []
for name, layer in self._model.named_children():
x = layer(x)
if name in self._layers_to_extract:
conv_representation.append(x)
return conv_representation
微调全连接层
model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Linear(512, 100) # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)
以较大学习率微调全连接层,较小学习率微调卷积层
model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3},
{'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
6. 其他注意事项
不要使用太大的线性层。因为nn.Linear(m,n)使用的是的内存,线性层太大很容易超出现有显存。
不要在太长的序列上使用RNN。因为RNN反向传播使用的是BPTT算法,其需要的内存和输入序列的长度呈线性关系。
model(x) 前用 model.train() 和 model.eval() 切换网络状态。
不需要计算梯度的代码块用 with torch.no_grad() 包含起来。
model.eval() 和 torch.no_grad() 的区别在于,model.eval() 是将网络切换为测试状态,例如 BN 和dropout在训练和测试阶段使用不同的计算方法。torch.no_grad() 是关闭 PyTorch 张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行loss.backward()。
model.zero_grad()会把整个模型的参数的梯度都归零, 而optimizer.zero_grad()只会把传入其中的参数的梯度归零.
torch.nn.CrossEntropyLoss 的输入不需要经过 Softmax。torch.nn.CrossEntropyLoss 等价于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。
loss.backward() 前用 optimizer.zero_grad() 清除累积梯度。
torch.utils.data.DataLoader 中尽量设置 pin_memory=True,对特别小的数据集如 MNIST 设置 pin_memory=False 反而更快一些。num_workers 的设置需要在实验中找到最快的取值。
用 del 及时删除不用的中间变量,节约 GPU 存储。
使用 inplace 操作可节约 GPU 存储,如
x = torch.nn.functional.relu(x, inplace=True)减少 CPU 和 GPU 之间的数据传输。例如如果你想知道一个 epoch 中每个 mini-batch 的 loss 和准确率,先将它们累积在 GPU 中等一个 epoch 结束之后一起传输回 CPU 会比每个 mini-batch 都进行一次 GPU 到 CPU 的传输更快。
使用半精度浮点数 half() 会有一定的速度提升,具体效率依赖于 GPU 型号。需要小心数值精度过低带来的稳定性问题。
时常使用 assert tensor.size() == (N, D, H, W) 作为调试手段,确保张量维度和你设想中一致。
除了标记 y 外,尽量少使用一维张量,使用 n*1 的二维张量代替,可以避免一些意想不到的一维张量计算结果。
统计代码各部分耗时
with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
…
print(profile)
或者在命令行运行
python -m torch.utils.bottleneck main.py使用TorchSnooper来调试PyTorch代码,程序在执行的时候,就会自动 print 出来每一行的执行结果的 tensor 的形状、数据类型、设备、是否需要梯度的信息。
pip install torchsnooper
import torchsnooper
对于函数,使用修饰器
@torchsnooper.snoop()
如果不是函数,使用 with 语句来激活 TorchSnooper,把训练的那个循环装进 with 语句中去。
with torchsnooper.snoop():
原本的代码
https://github.com/zasdfgbnm/TorchSnooper
- 模型可解释性,使用captum库
PyTorch使用技巧
目录
1、指定GPU编号
2、查看模型每层输出详情
3、梯度裁剪
4、扩展单张图片维度
5、one hot编码
6、防止验证模型时爆显存
7、学习率衰减
8、冻结某些层的参数
9、对不同层使用不同学习率
10、模型相关操作
11、Pytorch内置one hot函数
12、网络参数初始化
13、加载内置预训练模型
14、Pytorch编写代码基本步骤思想
指定GPU编号
- 设置当前使用的GPU设备仅为0号设备,设备名称为
/gpu:0
:os.environ["CUDA_VISIBLE_DEVICES"] = "0"
- 设置当前使用的GPU设备为0,1号两个设备,名称依次为
/gpu:0
、/gpu:1
:os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
,根据顺序表示优先使用0号设备,然后使用1号设备。
指定GPU的命令需要放在和神经网络相关的一系列操作的前面。
查看模型每层输出详情
Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。
使用很简单,如下用法:
from torchsummary import summary
summary(your_model, input_size=(channels, H, W))
input_size
是根据你自己的网络模型的输入尺寸进行设置。
梯度裁剪(Gradient Clipping)
import torch.nn as nn
outputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()
nn.utils.clip_grad_norm_
的参数:
- parameters – 一个基于变量的迭代器,会进行梯度归一化
- max_norm – 梯度的最大范数
- norm_type – 规定范数的类型,默认为L2
扩展单张图片维度
因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:
import cv2
import torch
image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())
img = image.view(1, *image.size())
print(img.size())
# output:
# torch.Size([h, w, c])
# torch.Size([1, h, w, c])
或
import cv2
import numpy as np
image = cv2.imread(img_path)
print(image.shape)
img = image[np.newaxis, :, :, :]
print(img.shape)
# output:
# (h, w, c)
# (1, h, w, c)
或
import cv2
import torch
image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())
img = image.unsqueeze(dim=0)
print(img.size())
img = img.squeeze(dim=0)
print(img.size())
# output:
# torch.Size([(h, w, c)])
# torch.Size([1, h, w, c])
# torch.Size([h, w, c])
tensor.unsqueeze(dim)
:扩展维度,dim指定扩展哪个维度。
tensor.squeeze(dim)
:去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。
独热编码
在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。
import torch
class_num = 8
batch_size = 4
def one_hot(label):
""" 将一维列表转换为独热编码 """
label = label.resize_(batch_size, 1)
m_zeros = torch.zeros(batch_size, class_num)
# 从 value 中取值,然后根据 dim 和 index 给相应位置赋值
onehot = m_zeros.scatter_(1, label, 1) # (dim,index,value)
return onehot.numpy() # Tensor -> Numpy
label = torch.LongTensor(batch_size).random_() % class_num # 对随机数取余print(one_hot(label))
# output:
[[0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0.]]
防止验证模型时爆显存
验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。
with torch.no_grad():
# 使用model进行预测的代码
pass
Pytorch 训练时无用的临时变量可能会越来越多,导致
out of memory
,可以使用下面语句来清理这些不需要的变量。
官网 上的解释为:
Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible innvidia-smi.
torch.cuda.empty_cache()
意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。
而 torch.cuda.empty_cache()
的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi
命令可见。注意使用此命令不会释放tensors占用的显存。
对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。
更详细的优化可以查看 优化显存使用 和 显存利用问题。
学习率衰减
import torch.optim as optim
from torch.optim import lr_scheduler
# 训练前的初始化
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1) # 每过10个epoch,学习率乘以0.1
# 训练过程中
for n in n_epoch:
scheduler.step()
...
可以随时查看学习率的值:optimizer.param_groups[0]['lr']
。
还有其他学习率更新的方式:
1、自定义更新公式:
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch:1/(epoch+1))
2、不依赖epoch更新学习率:
lr_scheduler.ReduceLROnPlateau()
提供了基于训练中某些测量值使学习率动态下降的方法,它的参数说明到处都可以查到。
提醒一点就是参数 mode=’min’ 还是’max’,取决于优化的的损失还是准确率,即使用 scheduler.step(loss)
还是scheduler.step(acc)
。
冻结某些层的参数
参考:https://www.zhihu.com/question/311095447/answer/589307812
在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。
我们需要先知道每一层的名字,通过如下代码打印:
net = Network() # 获取自定义网络结构
for name, value in net.named_parameters():
print('name: {0},\t grad: {1}'.format(name, value.requires_grad))
假设前几层信息如下:
name: cnn.VGG_16.convolution1_1.weight, grad: True
name: cnn.VGG_16.convolution1_1.bias, grad: True
name: cnn.VGG_16.convolution1_2.weight, grad: True
name: cnn.VGG_16.convolution1_2.bias, grad: True
name: cnn.VGG_16.convolution2_1.weight, grad: True
name: cnn.VGG_16.convolution2_1.bias, grad: True
name: cnn.VGG_16.convolution2_2.weight, grad: True
name: cnn.VGG_16.convolution2_2.bias, grad: True
后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:
no_grad = [
'cnn.VGG_16.convolution1_1.weight',
'cnn.VGG_16.convolution1_1.bias',
'cnn.VGG_16.convolution1_2.weight',
'cnn.VGG_16.convolution1_2.bias']
冻结方法如下:
net = Net.CTPN() # 获取网络结构
for name, value in net.named_parameters():
if name in no_grad:
value.requires_grad = False
else:
value.requires_grad = True
冻结后我们再打印每层的信息:
name: cnn.VGG_16.convolution1_1.weight, grad: False
name: cnn.VGG_16.convolution1_1.bias, grad: False
name: cnn.VGG_16.convolution1_2.weight, grad: False
name: cnn.VGG_16.convolution1_2.bias, grad: False
name: cnn.VGG_16.convolution2_1.weight, grad: True
name: cnn.VGG_16.convolution2_1.bias, grad: True
name: cnn.VGG_16.convolution2_2.weight, grad: True
name: cnn.VGG_16.convolution2_2.bias, grad: True
可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。
最后在定义优化器时,只对requires_grad为True的层的参数进行更新。
optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)
对不同层使用不同学习率
我们对模型的不同层使用不同的学习率。
还是使用这个模型作为例子:
net = Network() # 获取自定义网络结构
for name, value in net.named_parameters():
print('name: {}'.format(name))
# 输出:
# name: cnn.VGG_16.convolution1_1.weight
# name: cnn.VGG_16.convolution1_1.bias
# name: cnn.VGG_16.convolution1_2.weight
# name: cnn.VGG_16.convolution1_2.bias
# name: cnn.VGG_16.convolution2_1.weight
# name: cnn.VGG_16.convolution2_1.bias
# name: cnn.VGG_16.convolution2_2.weight
# name: cnn.VGG_16.convolution2_2.bias
对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:
conv1_params = []
conv2_params = []
for name, parms in net.named_parameters():
if "convolution1" in name:
conv1_params += [parms]
else:
conv2_params += [parms]
# 然后在优化器中进行如下操作:
optimizer = optim.Adam(
[
{"params": conv1_params, 'lr': 0.01},
{"params": conv2_params, 'lr': 0.001},
],
weight_decay=1e-3,
)
我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的weight_decay
。
也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。
模型相关操作
保存加载模型基本用法
1、保存加载整个模型
保存整个网络模型(网络结构+权重参数)。
torch.save(model, 'net.pkl')
直接加载整个网络模型(可能比较耗时)。
model = torch.load('net.pkl')
2、只保存加载模型参数
只保存模型的权重参数(速度快,占内存少)。
torch.save(model.state_dict(), 'net_params.pkl')
因为我们只保存了模型的参数,所以需要先定义一个网络对象,然后再加载模型参数。
# 构建一个网络结构
model = ClassNet()
# 将模型参数加载到新模型中
state_dict = torch.load('net_params.pkl')
model.load_state_dict(state_dict)
保存模型进行推理测试时,只需保存训练好的模型的权重参数,即推荐第二种方法。
主要用法就是上面这些,接下来讲一下PyTorch中保存加载模型内部的一些原理,以及我们可能会遇到的一些特殊的需求。
保存加载自定义模型
上面保存加载的 net.pkl
其实一个字典,通常包含如下内容:
- 网络结构:输入尺寸、输出尺寸以及隐藏层信息,以便能够在加载时重建模型。
- 模型的权重参数:包含各网络层训练后的可学习参数,可以在模型实例上调用
state_dict()
方法来获取,比如前面介绍只保存模型权重参数时用到的model.state_dict()
。 - 优化器参数:有时保存模型的参数需要稍后接着训练,那么就必须保存优化器的状态和所其使用的超参数,也是在优化器实例上调用
state_dict()
方法来获取这些参数。 - 其他信息:有时我们需要保存一些其他的信息,比如
epoch
,batch_size
等超参数。
知道了这些,那么我们就可以自定义需要保存的内容,比如:
# saving a checkpoint assuming the network class named ClassNet
checkpoint = {'model': ClassNet(),
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch}
torch.save(checkpoint, 'checkpoint.pkl')
上面的 checkpoint 是个字典,里面有4个键值对,分别表示网络模型的不同信息。
然后我们要加载上面保存的自定义的模型:
def load_checkpoint(filepath):
checkpoint = torch.load(filepath)
model = checkpoint['model'] # 提取网络结构
model.load_state_dict(checkpoint['model_state_dict']) # 加载网络权重参数
optimizer = TheOptimizerClass()
optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # 加载优化器参数
for parameter in model.parameters():
parameter.requires_grad = False
model.eval()
return model
model = load_checkpoint('checkpoint.pkl')
如果加载模型只是为了进行推理测试,则将每一层的 requires_grad
置为 False
,即固定这些权重参数;还需要调用 model.eval()
将模型置为测试模式,主要是将 dropout
和 batch normalization
层进行固定,否则模型的预测结果每次都会不同。
如果希望继续训练,则调用 model.train()
,以确保网络模型处于训练模式。
state_dict()
也是一个Python字典对象,model.state_dict()
将每一层的可学习参数映射为参数矩阵,其中只包含具有可学习参数的层(卷积层、全连接层等)。
比如下面这个例子:
# Define model
class TheModelClass(nn.Module):
def __init__(self):
super(TheModelClass, self).__init__()
self.conv1 = nn.Conv2d(3, 8, 5)
self.bn = nn.BatchNorm2d(8)
self.conv2 = nn.Conv2d(8, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.bn(x)
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Initialize model
model = TheModelClass()
# Initialize optimizer
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
print("Model's state_dict:")
for param_tensor in model.state_dict():
print(param_tensor, "\t", model.state_dict()[param_tensor].size())
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
print(var_name, "\t", optimizer.state_dict()[var_name])
输出为:
Model's state_dict:
conv1.weight torch.Size([8, 3, 5, 5])
conv1.bias torch.Size([8])
bn.weight torch.Size([8])
bn.bias torch.Size([8])
bn.running_mean torch.Size([8])
bn.running_var torch.Size([8])
bn.num_batches_tracked torch.Size([])
conv2.weight torch.Size([16, 8, 5, 5])
conv2.bias torch.Size([16])
fc1.weight torch.Size([120, 400])
fc1.bias torch.Size([120])
fc2.weight torch.Size([10, 120])
fc2.bias torch.Size([10])
Optimizer's state_dict:
state {}
param_groups [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [139805696932024, 139805483616008, 139805483616080, 139805483616152, 139805483616440, 139805483616512, 139805483616584, 139805483616656, 139805483616728, 139805483616800]}]
可以看到 model.state_dict()
保存了卷积层,BatchNorm层和最大池化层的信息;而 optimizer.state_dict()
则保存的优化器的状态和相关的超参数。
跨设备保存加载模型
1、在 CPU 上加载在 GPU 上训练并保存的模型(Save on GPU, Load on CPU):
device = torch.device('cpu')
model = TheModelClass()
# Load all tensors onto the CPU device
model.load_state_dict(torch.load('net_params.pkl', map_location=device))
map_location
:a function, torch.device, string or a dict specifying how to remap storage locations
令 torch.load()
函数的 map_location
参数等于 torch.device('cpu')
即可。 这里令 map_location
参数等于 'cpu'
也同样可以。
2、在 GPU 上加载在 GPU 上训练并保存的模型(Save on GPU, Load on GPU):
device = torch.device("cuda")
model = TheModelClass()
model.load_state_dict(torch.load('net_params.pkl'))
model.to(device)
在这里使用 map_location
参数不起作用,要使用 model.to(torch.device("cuda"))
将模型转换为CUDA优化的模型。
还需要对将要输入模型的数据调用 data = data.to(device)
,即将数据从CPU转移到GPU。请注意,调用 my_tensor.to(device)
会返回一个 my_tensor
在 GPU 上的副本,它不会覆盖 my_tensor
。因此需要手动覆盖张量:my_tensor = my_tensor.to(device)
。
3、在 GPU 上加载在 GPU 上训练并保存的模型(Save on CPU, Load on GPU)
device = torch.device("cuda")
model = TheModelClass()
model.load_state_dict(torch.load('net_params.pkl', map_location="cuda:0"))
model.to(device)
当加载包含GPU tensors的模型时,这些tensors 会被默认加载到GPU上,不过是同一个GPU设备。
当有多个GPU设备时,可以通过将 map_location
设定为 *cuda:device_id*
来指定使用哪一个GPU设备,上面例子是指定编号为0的GPU设备。
其实也可以将 torch.device("cuda")
改为 torch.device("cuda:0")
来指定编号为0的GPU设备。
最后调用 model.to(torch.device('cuda'))
来将模型的tensors转换为 CUDA tensors。
下面是PyTorch官方文档上的用法,可以进行参考:
>>> torch.load('tensors.pt')
# Load all tensors onto the CPU
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
# Load all tensors onto the CPU, using a function
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
# Load all tensors onto GPU 1
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
# Map tensors from GPU 1 to GPU 0
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
CUDA 的用法
在PyTorch中和GPU相关的几个函数:
import torch
# 判断cuda是否可用;
print(torch.cuda.is_available())
# 获取gpu数量;
print(torch.cuda.device_count())
# 获取gpu名字;
print(torch.cuda.get_device_name(0))
# 返回当前gpu设备索引,默认从0开始;
print(torch.cuda.current_device())
# 查看tensor或者model在哪块GPU上
print(torch.tensor([0]).get_device())
我的电脑输出为:
True
1
GeForce RTX 2080 Ti
0
有时我们需要把数据和模型从cpu移到gpu中,有以下两种方法:
use_cuda = torch.cuda.is_available()
# 方法一:
if use_cuda:
data = data.cuda()
model.cuda()
# 方法二:
device = torch.device("cuda" if use_cuda else "cpu")
data = data.to(device)
model.to(device)
个人比较习惯第二种方法,可以少一个 if 语句。而且该方法还可以通过设备号指定使用哪个GPU设备,比如使用0号设备:
device = torch.device("cuda:0" if use_cuda else "cpu")
Pytorch内置one_hot函数
感谢@yangyangyang 补充:Pytorch 1.1后,one_hot可以直接用torch.nn.functional.one_hot
。
然后我将Pytorch升级到1.2版本,试用了下 one_hot 函数,确实很方便。
具体用法如下:
import torch.nn.functional as F
import torch
tensor = torch.arange(0, 5) % 3 # tensor([0, 1, 2, 0, 1])
one_hot = F.one_hot(tensor)
# 输出:
# tensor([[1, 0, 0],
# [0, 1, 0],
# [0, 0, 1],
# [1, 0, 0],
# [0, 1, 0]])
F.one_hot
会自己检测不同类别个数,生成对应独热编码。我们也可以自己指定类别数:
tensor = torch.arange(0, 5) % 3 # tensor([0, 1, 2, 0, 1])
one_hot = F.one_hot(tensor, num_classes=5)
# 输出:
# tensor([[1, 0, 0, 0, 0],
# [0, 1, 0, 0, 0],
# [0, 0, 1, 0, 0],
# [1, 0, 0, 0, 0],
# [0, 1, 0, 0, 0]])
升级 Pytorch (cpu版本)的命令:conda install pytorch torchvision \-c pytorch
(希望Pytorch升级不会影响项目代码)
网络参数初始化
神经网络的初始化是训练流程的重要基础环节,会对模型的性能、收敛性、收敛速度等产生重要的影响。
以下介绍两种常用的初始化操作。
(1) 使用pytorch内置的torch.nn.init方法。
常用的初始化操作,例如正态分布、均匀分布、xavier初始化、kaiming初始化等都已经实现,可以直接使用。具体详见PyTorch 中 torch.nn.init 中文文档。
init.xavier_uniform(net1[0].weight)
(2) 对于一些更加灵活的初始化方法,可以借助numpy。
对于自定义的初始化方法,有时tensor的功能不如numpy强大灵活,故可以借助numpy实现初始化方法,再转换到tensor上使用。
for layer in net1.modules():
if isinstance(layer, nn.Linear): # 判断是否是线性层
param_shape = layer.weight.shape
layer.weight.data = torch.from_numpy(np.random.normal(0, 0.5, size=param_shape))
# 定义为均值为 0,方差为 0.5 的正态分布
加载内置预训练模型
torchvision.models
模块的子模块中包含以下模型:
- AlexNet
- VGG
- ResNet
- SqueezeNet
- DenseNet
导入这些模型的方法为:
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
有一个很重要的参数为pretrained
,默认为False
,表示只导入模型的结构,其中的权重是随机初始化的。
如果pretrained
为 True
,表示导入的是在ImageNet
数据集上预训练的模型。
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
Pytorch编写代码基本步骤思想
分为四大步骤:
1、输入处理模块 (X 输入数据,变成网络能够处理的Tensor类型)
2、模型构建模块 (主要负责从输入的数据,得到预测的y^, 这就是我们经常说的前向过程)
3、定义代价函数和优化器模块 (注意,前向过程只会得到模型预测的结果,并不会自动求导和更新,是由这个模块进行处理)
4、构建训练过程 (迭代训练过程,就是上图表情包的训练迭代过程)
这几个模块分别与上图的数字标号1,2,3,4进行一一对应!
知道了上面的宏观思想之后,后面给出每个模块稍微具体一点的解释和具体一个例子,再帮助大家熟悉对应的代码!
1.数据处理
对于数据处理,最为简单的⽅式就是将数据组织成为⼀个 。但许多训练需要⽤到mini-batch,直 接组织成Tensor不便于我们操作。pytorch为我们提供了Dataset和Dataloader两个类来方便的构建。
torch.utils.data.Dataset
继承Dataset 类需要override 以下⽅法:
torch.utils.data.DataLoader
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)
DataLoader Batch。如果选择shuffle = True,每⼀个epoch 后,mini-Batch batch_size 常⻅的使⽤⽅法如下:
2. 模型构建
所有的模型都需要继承torch.nn.Module , 需要实现以下⽅法:
其中forward() ⽅法是前向传播的过程。在实现模型时,我们不需要考虑反向传播。
3. 定义代价函数和优化器
4、构建训练过程
pytorch的训练循环⼤致如下:
5、总结
13个PyTorch特性
1 DatasetFolder
当学习PyTorch时,人们首先要做的事情之一是实现自己的某种Dataset 。这是一个低级错误,没有必要浪费时间写这样的东西。通常,数据集要么是数据列表(或者是numpy数组),要么磁盘上的文件。所以,把数据在磁盘上组织好,要比写一个自定义的Dataset来加载某种奇怪的格式更好。
分类器最常见的数据格式之一,是有一个带有子文件夹的目录,子文件夹表示类,子文件夹中的文件表示样本,如下所示。
folder/class_0/file1.txt
folder/class_0/file2.txt
folder/class_0/...
folder/class_1/file3.txt
folder/class_1/file4.txt
folder/class_2/file5.txt
folder/class_2/...
有一个内置的方式来加载这类数据集,不管你的数据是图像,文本文件或其他什么,只要使用’DatasetFolder就可以了。令人惊讶的是,这个类是torchvision包的一部分,而不是核心PyTorch。这个类非常全面,你可以从文件夹中过滤文件,使用自定义代码加载它们,并动态转换原始文件。例子:
from torchvision.datasets import DatasetFolder
from pathlib import Path
# I have text files in this folder
ds = DatasetFolder("/Users/marcin/Dev/tmp/my_text_dataset",
loader=lambda path: Path(path).read_text(),
extensions=(".txt",), #only load .txt files
transform=lambda text: text[:100], # only take first 100 characters
)
# Everything you need is already there
len(ds), ds.classes, ds.class_to_idx
(20, ['novels', 'thrillers'], {'novels': 0, 'thrillers': 1})
如果你在处理图像,还有一个torchvision.datasets.ImageFolder类,它基于DatasetLoader,它被预先配置为加载图像。
2 尽量少用.to(device),用zeros_like/ones_like之类的代替
我读过很多来自GitHub仓库的PyTorch代码。最让我恼火的是,几乎在每个repo中都有许多*.to(device)行,它们将数据从CPU或GPU转移到其他地方。这样的语句通常会出现在大量的repos或初学者教程中。我强烈建议尽可能少地实现这类操作,并依赖内置的PyTorch功能自动实现这类操作。到处使用.to(device)通常会导致性能下降,还会出现异常:
Expected object of device type cuda but got device type cpu
显然,有些情况下你无法回避它,但大多数情况(如果不是全部)都在这里。其中一种情况是初始化一个全0或全1的张量,这在深度神经网络计算损失的的时候是经常发生的,模型的输出已经在cuda上了,你需要另外的tensor也是在cuda上,这时,你可以使用*_like操作符:
my_output # on any device, if it's cuda then my_zeros will also be on cudamy_zeros = torch.zeros_like(my_output_from_model)
在内部,PyTorch所做的是调用以下操作:
my_zeros = torch.zeros(my_output.size(), dtype=my_output.dtype, layout=my_output.layout, device=my_output.device)
所以所有的设置都是正确的,这样就减少了代码中出现错误的概率。类似的操作包括:
torch.zeros_like()
torch.ones_like()
torch.rand_like()
torch.randn_like()
torch.randint_like()
torch.empty_like()
torch.full_like()
3 Register Buffer ( nn.Module.register_buffer)
这将是我劝人们不要到处使用 .to(device) 的下一步。有时,你的模型或损失函数需要有预先设置的参数,并在调用forward时使用,例如,它可以是一个“权重”参数,它可以缩放损失或一些固定张量,它不会改变,但每次都使用。对于这种情况,请使用nn.Module.register_buffer 方法,它告诉PyTorch将传递给它的值存储在模块中,并将这些值随模块一起移动。如果你初始化你的模块,然后将它移动到GPU,这些值也会自动移动。此外,如果你保存模块的状态,buffers也会被保存!
一旦注册,这些值就可以在forward函数中访问,就像其他模块的属性一样
from torch import nn
import torch
class ModuleWithCustomValues(nn.Module):
def __init__(self, weights, alpha):
super().__init__()
self.register_buffer("weights", torch.tensor(weights))
self.register_buffer("alpha", torch.tensor(alpha))
def forward(self, x):
return x * self.weights + self.alpha
m = ModuleWithCustomValues(
weights=[1.0, 2.0], alpha=1e-4
)
m(torch.tensor([1.23, 4.56]))
tensor([1.2301, 9.1201])
4 Built-in Identity()
有时候,当你使用迁移学习时,你需要用1:1的映射替换一些层,可以用nn.Module来实现这个目的,只返回输入值。PyTorch内置了这个类。
例子,你想要在分类层之前从一个预训练过的ResNet50获取图像表示。以下是如何做到这一点:
from torchvision.models import resnet50
model = resnet50(pretrained=True)
model.fc = nn.Identity()
last_layer_output = model(torch.rand((1, 3, 224, 224)))
last_layer_output.shape
torch.Size([1, 2048])
5 Pairwise distances: torch.cdist
下次当你遇到计算两个张量之间的欧几里得距离(或者一般来说:p范数)的问题时,请记住torch.cdist。它确实做到了这一点,并且在使用欧几里得距离时还自动使用矩阵乘法,从而提高了性能。
points1 = torch.tensor([[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]])
points2 = torch.tensor([[0.0, 0.0], [-1.0, -1.0], [-2.0, -2.0], [-3.0, -3.0]]) # batches don't have to be equal
torch.cdist(points1, points2, p=2.0)
tensor([[0.0000, 1.4142, 2.8284, 4.2426],
[1.4142, 2.8284, 4.2426, 5.6569],
[2.8284, 4.2426, 5.6569, 7.0711]])
没有矩阵乘法或有矩阵乘法的性能,在我的机器上使用mm时,速度快了2倍以上。
%%timeit
points1 = torch.rand((512, 2))
points2 = torch.rand((512, 2))
torch.cdist(points1, points2, p=2.0, compute_mode="donot_use_mm_for_euclid_dist")
867µs±142µs per loop (mean±std. dev. of 7 run, 1000 loop each)
%%timeit
points1 = torch.rand((512, 2))
points2 = torch.rand((512, 2))
torch.cdist(points1, points2, p=2.0)
417µs±52.9µs per loop (mean±std. dev. of 7 run, 1000 loop each)
6 Cosine similarity: F.cosine_similarity
与上一点相同,计算欧几里得距离并不总是你需要的东西。当处理向量时,通常余弦相似度是选择的度量。PyTorch也有一个内置的余弦相似度实现。
import torch.nn.functional as F
vector1 = torch.tensor([0.0, 1.0])
vector2 = torch.tensor([0.05, 1.0])
print(F.cosine_similarity(vector1, vector2, dim=0))
vector3 = torch.tensor([0.0, -1.0])
print(F.cosine_similarity(vector1, vector3, dim=0))
tensor(0.9988)
tensor(-1.)
PyTorch中批量计算余弦距离
import torch.nn.functional as F
batch_of_vectors = torch.rand((4, 64))
similarity_matrix = F.cosine_similarity(batch_of_vectors.unsqueeze(1), batch_of_vectors.unsqueeze(0), dim=2)
similarity_matrix
tensor([[1.0000, 0.6922, 0.6480, 0.6789],
[0.6922, 1.0000, 0.7143, 0.7172],
[0.6480, 0.7143, 1.0000, 0.7312],
[0.6789, 0.7172, 0.7312, 1.0000]])
7 归一化向量: F.normalize
最后一点仍然与向量和距离有松散的联系,那就是归一化:通常是通过改变向量的大小来提高计算的稳定性。最常用的归一化是L2,可以在PyTorch中按如下方式应用:
vector = torch.tensor([99.0, -512.0, 123.0, 0.1, 6.66])
normalized_vector = F.normalize(vector, p=2.0, dim=0)
normalized_vector
tensor([ 1.8476e-01, -9.5552e-01, 2.2955e-01, 1.8662e-04, 1.2429e-02])
在PyTorch中执行归一化的旧方法是:
vector = torch.tensor([99.0, -512.0, 123.0, 0.1, 6.66])
normalized_vector = vector / torch.norm(vector, p=2.0)
normalized_vector
tensor([ 1.8476e-01, -9.5552e-01, 2.2955e-01, 1.8662e-04, 1.2429e-02])
在PyTorch中批量进行L2归一化
batch_of_vectors = torch.rand((4, 64))
normalized_batch_of_vectors = F.normalize(batch_of_vectors, p=2.0, dim=1)
normalized_batch_of_vectors.shape, torch.norm(normalized_batch_of_vectors, dim=1)
# all vectors will have length of 1.0(torch.Size([4, 64]), tensor([1.0000, 1.0000, 1.0000, 1.0000]))
8 线性层 + 分块技巧 (torch.chunk)
这是我最近发现的一个有创意的技巧。假设你想把你的输入映射到N个不同的线性投影中。你可以通过创建N个nn.Linear来做到这一点。或者你也可以创建一个单一的线性层,做一个向前传递,然后将输出分成N块。这种方法通常会带来更高的性能,所以这是一个值得记住的技巧。
d = 1024
batch = torch.rand((8, d))
layers = nn.Linear(d, 128, bias=False), nn.Linear(d, 128, bias=False), nn.Linear(d, 128, bias=False)
one_layer = nn.Linear(d, 128 * 3, bias=False)
%%timeit
o1 = layers[0](batch)
o2 = layers[1](batch)
o3 = layers[2](batch)
289 µs ± 30.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%%timeit
o1, o2, o3 = torch.chunk(one_layer(batch), 3, dim=1)
202 µs ± 8.09 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
9 Masked select (torch.masked_select)
有时你只需要对输入张量的一部分进行计算。给你一个例子:你想计算的损失只在满足某些条件的张量上。为了做到这一点,你可以使用torch.masked_select,注意,当需要梯度时也可以使用这个操作。
data = torch.rand((3, 3)).requires_grad_()
print(data)
mask = data > data.mean()
print(mask)
torch.masked_select(data, mask)
tensor([[0.0582, 0.7170, 0.7713],
[0.9458, 0.2597, 0.6711],
[0.2828, 0.2232, 0.1981]], requires_grad=True)
tensor([[False, True, True],
[ True, False, True],
[False, False, False]])
tensor([0.7170, 0.7713, 0.9458, 0.6711], grad_fn=<MaskedSelectBackward>)
直接在tensor上应用mask
类似的行为可以通过使用mask作为输入张量的 “indexer”来实现。
data[mask]
tensor([0.7170, 0.7713, 0.9458, 0.6711], grad_fn=<IndexBackward>)
有时,一个理想的解决方案是用0填充mask中所有的False值,可以这样做:
data * mask
tensor([[0.0000, 0.7170, 0.7713],
[0.9458, 0.0000, 0.6711],
[0.0000, 0.0000, 0.0000]], grad_fn=<MulBackward0>)
10 使用 torch.where来对tensors加条件
当你想把两个张量结合在一个条件下这个函数很有用,如果条件是真,那么从第一个张量中取元素,如果条件是假,从第二个张量中取元素。
x = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0], requires_grad=True)
y = -x
condition_or_mask = x <= 3.0
torch.where(condition_or_mask, x, y)
tensor([ 1., 2., 3., -4., -5.], grad_fn=<SWhereBackward>)
11 在给定的位置给张量填入值(Tensor.scatter)
这个函数的用例如下,你想用给定位置下另一个张量的值填充一个张量。一维张量更容易理解,所以我将先展示它,然后继续更高级的例子。
data = torch.tensor([1, 2, 3, 4, 5])
index = torch.tensor([0, 1])
values = torch.tensor([-1, -2, -3, -4, -5])
data.scatter(0, index, values)
tensor([-1, -2, 3, 4, 5])
上面的例子很简单,但是现在看看如果将index改为index = torch.tensor([0, 1, 4])会发生什么:
data = torch.tensor([1, 2, 3, 4, 5])
index = torch.tensor([0, 1, 4])
values = torch.tensor([-1, -2, -3, -4, -5])
data.scatter(0, index, values)
tensor([-1, -2, 3, 4, -3])
为什么最后一个值是-3,这是反直觉的,对吧?这是PyTorch scatter函数的中心思想。index变量表示data张量的第i个值应该放在values张量的哪个位置。我希望下面的简单python版的这个操作能让你更明白:
data_orig = torch.tensor([1, 2, 3, 4, 5])
index = torch.tensor([0, 1, 4])
values = torch.tensor([-1, -2, -3, -4, -5])
scattered = data_orig.scatter(0, index, values)
data = data_orig.clone()
for idx_in_values, where_to_put_the_value in enumerate(index):
what_value_to_put = values[idx_in_values]
data[where_to_put_the_value] = what_value_to_put
data, scattered
(tensor([-1, -2, 3, 4, -3]), tensor([-1, -2, 3, 4, -3]))
2D数据的PyTorch scatter例子
始终记住,index的形状与values的形状相关,而index中的值对应于data中的位置。
data = torch.zeros((4, 4)).float()
index = torch.tensor([
[0, 1],
[2, 3],
[0, 3],
[1, 2]
])
values = torch.arange(1, 9).float().view(4, 2)
values, data.scatter(1, index, values)
(tensor([[1., 2.],
[3., 4.],
[5., 6.],
[7., 8.]]),
tensor([[1., 2., 0., 0.],
[0., 0., 3., 4.],
[5., 0., 0., 6.],
[0., 7., 8., 0.]]))
12 在网络中进行图像插值 (F.interpolate)
当我学习PyTorch时,我惊讶地发现,实际上可以在前向传递中调整图像(或任何中间张量),并保持梯度流。这种方法在使用CNN和GANs时特别有用。
# image from https://commons.wikimedia.org/wiki/File:A_female_British_Shorthair_at_the_age_of_20_months.jpg
img = Image.open("./cat.jpg")
img
to_pil_image(
F.interpolate(to_tensor(img).unsqueeze(0), # batch of size 1
mode="bilinear",
scale_factor=2.0,
align_corners=False).squeeze(0) # remove batch dimension
)
看看梯度流是如何保存的:
F.interpolate(to_tensor(img).unsqueeze(0).requires_grad_(),
mode="bicubic",
scale_factor=2.0,
align_corners=False)
tensor([[[[0.9216, 0.9216, 0.9216, ..., 0.8361, 0.8272, 0.8219],
[0.9214, 0.9214, 0.9214, ..., 0.8361, 0.8272, 0.8219],
[0.9212, 0.9212, 0.9212, ..., 0.8361, 0.8272, 0.8219],
...,
[0.9098, 0.9098, 0.9098, ..., 0.3592, 0.3486, 0.3421],
[0.9098, 0.9098, 0.9098, ..., 0.3566, 0.3463, 0.3400],
[0.9098, 0.9098, 0.9098, ..., 0.3550, 0.3449, 0.3387]],
[[0.6627, 0.6627, 0.6627, ..., 0.5380, 0.5292, 0.5238],
[0.6626, 0.6626, 0.6626, ..., 0.5380, 0.5292, 0.5238],
[0.6623, 0.6623, 0.6623, ..., 0.5380, 0.5292, 0.5238],
...,
[0.6196, 0.6196, 0.6196, ..., 0.3631, 0.3525, 0.3461],
[0.6196, 0.6196, 0.6196, ..., 0.3605, 0.3502, 0.3439],
[0.6196, 0.6196, 0.6196, ..., 0.3589, 0.3488, 0.3426]],
[[0.4353, 0.4353, 0.4353, ..., 0.1913, 0.1835, 0.1787],
[0.4352, 0.4352, 0.4352, ..., 0.1913, 0.1835, 0.1787],
[0.4349, 0.4349, 0.4349, ..., 0.1913, 0.1835, 0.1787],
...,
[0.3333, 0.3333, 0.3333, ..., 0.3827, 0.3721, 0.3657],
[0.3333, 0.3333, 0.3333, ..., 0.3801, 0.3698, 0.3635],
[0.3333, 0.3333, 0.3333, ..., 0.3785, 0.3684, 0.3622]]]],
grad_fn=<UpsampleBicubic2DBackward1>)
13 将图像做成网格 (torchvision.utils.make_grid)
当使用PyTorch和torchvision时,不需要使用matplotlib或一些外部库来复制粘贴代码来显示图像网格。只要使用torchvision.utils.make_grid就行了。
from torchvision.utils import make_grid
from torchvision.transforms.functional import to_tensor, to_pil_image
from PIL import Image
img = Image.open("./cat.jpg")
to_pil_image(
make_grid(
[to_tensor(i) for i in [img, img, img]],
nrow=2, # number of images in single row
padding=5 # "frame" size
)
)
深度学习调参技巧
- 不管什么模型,先在一个较小的训练集上train和test,看看它能不能过拟合。如果不能过拟合,可能是学习率太大,或者代码写错了。先调小学习率试一下,如果还不行就去检查代码,先看dataloader输出的数据对不对,再看模型每一步的size是否符合自己期待。
- 看train/eval的loss曲线,正常的情况应该是train loss呈log状一直下降最后趋于稳定,eval loss开始时一直下降到某一个epoch之后开始趋于稳定或开始上升,这时候可以用early stopping保存eval loss最低的那个模型。如果loss曲线非常不正常,很有可能是数据处理出了问题,比如label对应错了,回去检查代码。
- 不要一开始就用大数据集,先在一个大概2w训练集,2k测试集的小数据集上调参。
- 尽量不要自己从头搭架子(新手和半新手)。找一个已经明确没有bug能跑通的其它任务的架子,在它的基础上修改。否则debug过程非常艰难,因为有时候是版本迭代产生的问题,修改起来很麻烦。
- 优化器优先用adam,学习率设1e-3或1e-4,再试Radam(LiyuanLucasLiu/RAdam)。不推荐sgdm,因为很慢。
- lrscheduler用torch.optim.lr_scheduler.CosineAnnealingLR,T_max设32或64,几个任务上试效果都不错。(用这个lr_scheduler加上adam系的optimizer基本就不用怎么调学习率了)
- 有一些任务(尤其是有RNN的)要做梯度裁剪,torch.nn.utils.clip_grad_norm。
- 参数初始化,lstm的h用orthogonal,其它用he或xavier。
- 激活函数用relu一般就够了,也可以试试leaky relu。
- batchnorm和dropout可以试,放的位置很重要。优先尝试放在最后输出层之前,以及embedding层之后。RNN可以试layer_norm。有些任务上加了这些层可能会有负作用。
- metric learning中先试标label的分类方法。然后可以用triplet loss,margin这个参数的设置很重要。
- batchsize设置小一点通常会有一些提升,某些任务batchsize设成1有奇效。
- embedding层的embedsize可以小一些(64 or 128),之后LSTM或CNN的hiddensize要稍微大一些(256 or 512)。(ALBERT论文里面大概也是这个意思)
- 模型方面,可以先用2或3层LSTM试一下,通常效果都不错。
- weight decay可以试一下,我一般用1e-4。
- 有CNN的地方就用shortcut。CNN层数加到某一个值之后对结果影响就不大了,这个值作为参数可以调一下。
- GRU和LSTM在大部分任务上效果差不多。
- 看论文时候不要全信,能复现的尽量复现一下,许多论文都会做低baseline,但实际使用时很多baseline效果很不错。
- 对于大多数任务,数据比模型重要。面对新任务时先分析数据,再根据数据设计模型,并决定各个参数。例如nlp有些任务中的padding长度,通常需要达到数据集的90%以上,可用pandas的describe函数进行分析。
PyTorch模型训练提速的技巧
Pytorch-Lightning
你可以在Pytorch的库Pytorch- lightning中找到我在这里讨论的每一个优化。Lightning是在Pytorch之上的一个封装,它可以自动训练,同时让研究人员完全控制关键的模型组件。Lightning 使用最新的最佳实践,并将你可能出错的地方最小化。
我们为MNIST定义LightningModel并使用Trainer来训练模型。
from pytorch_lightning import Trainer
model = LightningModule(…)
trainer = Trainer()
trainer.fit(model)
1. DataLoaders
这可能是最容易获得速度增益的地方。保存h5py或numpy文件以加速数据加载的时代已经一去不复返了,使用Pytorch dataloader加载图像数据很简单(对于NLP数据,请查看TorchText)。
在lightning中,你不需要指定训练循环,只需要定义dataLoaders和Trainer就会在需要的时候调用它们。
dataset = MNIST(root=self.hparams.data_root, train=train, download=True)
loader = DataLoader(dataset, batch_size=32, shuffle=True)
for batch in loader:
x, y = batch
model.training_step(x, y)
...
2. DataLoaders 中的 workers 的数量
另一个加速的神奇之处是允许批量并行加载。因此,您可以一次装载nb_workers个batch,而不是一次装载一个batch。
# slow
loader = DataLoader(dataset, batch_size=32, shuffle=True)
# fast (use 10 workers)
loader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=10)
3. Batch size
在开始下一个优化步骤之前,将batch size增大到CPU-RAM或GPU-RAM所允许的最大范围。
下一节将重点介绍如何帮助减少内存占用,以便你可以继续增加batch size。
记住,你可能需要再次更新你的学习率。一个好的经验法则是,如果batch size加倍,那么学习率就加倍。
4. 梯度累加
在你已经达到计算资源上限的情况下,你的batch size仍然太小(比如8),然后我们需要模拟一个更大的batch size来进行梯度下降,以提供一个良好的估计。
假设我们想要达到128的batch size大小。我们需要以batch size为8执行16个前向传播和向后传播,然后再执行一次优化步骤。
# clear last step
optimizer.zero_grad()
# 16 accumulated gradient steps
scaled_loss = 0
for accumulated_step_i in range(16):
out = model.forward()
loss = some_loss(out,y)
loss.backward()
scaled_loss += loss.item()
# update weights after 8 steps. effective batch = 8*16
optimizer.step()
# loss is now scaled up by the number of accumulated batches
actual_loss = scaled_loss / 16
在lightning中,全部都给你做好了,只需要设置accumulate_grad_batches=16
:
trainer = Trainer(accumulate_grad_batches=16)
trainer.fit(model)
5. 保留的计算图
一个最简单撑爆你的内存的方法是为了记录日志存储你的loss。
losses = []
...
losses.append(loss)
print(f'current loss: {torch.mean(losses)'})
上面的问题是,loss仍然包含有整个图的副本。在这种情况下,调用.item()来释放它。
![1_CER3v8cok2UOBNsmnBrzPQ](9 Tips For Training Lightning-Fast Neural Networks In Pytorch.assets/1_CER3v8cok2UOBNsmnBrzPQ.gif)# bad
losses.append(loss)
# good
losses.append(loss.item())
Lightning会非常小心,确保不会保留计算图的副本。
6. 单个GPU训练
一旦你已经完成了前面的步骤,是时候进入GPU训练了。在GPU上的训练将使多个GPU cores之间的数学计算并行化。你得到的加速取决于你所使用的GPU类型。我推荐个人用2080Ti,公司用V100。
乍一看,这可能会让你不知所措,但你真的只需要做两件事:1)移动你的模型到GPU, 2)每当你运行数据通过它,把数据放到GPU上。
# put model on GPU
model.cuda(0)
# put data on gpu (cuda on a variable returns a cuda copy)
x = x.cuda(0)
# runs on GPU now
model(x)
如果你使用Lightning,你什么都不用做,只需要设置Trainer(gpus=1)
。
# ask lightning to use gpu 0 for training
trainer = Trainer(gpus=[0])
trainer.fit(model)
在GPU上进行训练时,要注意的主要事情是限制CPU和GPU之间的传输次数。
# expensive
x = x.cuda(0)# very expensive
x = x.cpu()
x = x.cuda(0)
如果内存耗尽,不要将数据移回CPU以节省内存。在求助于GPU之前,尝试以其他方式优化你的代码或GPU之间的内存分布。
另一件需要注意的事情是调用强制GPU同步的操作。清除内存缓存就是一个例子。
# really bad idea. Stops all the GPUs until they all catch up
torch.cuda.empty_cache()
但是,如果使用Lightning,惟一可能出现问题的地方是在定义Lightning Module时。Lightning会特别注意不去犯这类错误。
7. 16-bit 精度
16bit精度是将内存占用减半的惊人技术。大多数模型使用32bit精度数字进行训练。然而,最近的研究发现,16bit模型也可以工作得很好。混合精度意味着对某些内容使用16bit,但将权重等内容保持在32bit。
要在Pytorch中使用16bit精度,请安装NVIDIA的apex库,并对你的模型进行这些更改。
# enable 16-bit on the model and the optimizer
model, optimizers = amp.initialize(model, optimizers, opt_level='O2')
# when doing .backward, let amp do it so it can scale the loss
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
amp包会处理好大部分事情。如果梯度爆炸或趋向于0,它甚至会缩放loss。
在lightning中,启用16bit并不需要修改模型中的任何内容,也不需要执行我上面所写的操作。设置Trainer(precision=16)
就可以了。
trainer = Trainer(amp_level='O2', use_amp=False)
trainer.fit(model)
8. 移动到多个GPUs中
现在,事情变得非常有趣了。有3种(也许更多?)方法来进行多GPU训练。
分batch训练
第一种方法被称为“分batch训练”。该策略将模型复制到每个GPU上,每个GPU获得batch的一部分。
# copy model on each GPU and give a fourth of the batch to each
model = DataParallel(model, devices=[0, 1, 2 ,3])
# out has 4 outputs (one for each gpu)
out = model(x.cuda(0))
在lightning中,你只需要增加GPUs的数量,然后告诉trainer,其他什么都不用做。
# ask lightning to use 4 GPUs for training
trainer = Trainer(gpus=[0, 1, 2, 3])
trainer.fit(model)
模型分布训练
有时你的模型可能太大不能完全放到内存中。例如,带有编码器和解码器的序列到序列模型在生成输出时可能会占用20GB RAM。在本例中,我们希望将编码器和解码器放在独立的GPU上。
# each model is sooo big we can't fit both in memory
encoder_rnn.cuda(0)
decoder_rnn.cuda(1)
# run input through encoder on GPU 0
encoder_out = encoder_rnn(x.cuda(0))
# run output through decoder on the next GPU
out = decoder_rnn(encoder_out.cuda(1))
# normally we want to bring all outputs back to GPU 0
out = out.cuda(0)
对于这种类型的训练,在Lightning中不需要指定任何GPU,你应该把LightningModule中的模块放到正确的GPU上。
class MyModule(LightningModule):
def __init__():
self.encoder = RNN(...)
self.decoder = RNN(...)
def forward(x):
# models won't be moved after the first forward because
# they are already on the correct GPUs
self.encoder.cuda(0)
self.decoder.cuda(1)
out = self.encoder(x)
out = self.decoder(out.cuda(1))
# don't pass GPUs to trainer
model = MyModule()
trainer = Trainer()
trainer.fit(model)
两者混合
在上面的情况下,编码器和解码器仍然可以从并行化操作中获益。
# change these lines
self.encoder = RNN(...)
self.decoder = RNN(...)
# to these
# now each RNN is based on a different gpu set
self.encoder = DataParallel(self.encoder, devices=[0, 1, 2, 3])
self.decoder = DataParallel(self.encoder, devices=[4, 5, 6, 7])
# in forward...
out = self.encoder(x.cuda(0))
# notice inputs on first gpu in device
sout = self.decoder(out.cuda(4)) # <--- the 4 here
使用多个GPU时要考虑的注意事项:
- 如果模型已经在GPU上了,model.cuda()不会做任何事情。
- 总是把输入放在设备列表中的第一个设备上。
- 在设备之间传输数据是昂贵的,把它作为最后的手段。
- 优化器和梯度会被保存在GPU 0上,因此,GPU 0上使用的内存可能会比其他GPU大得多。
9. 多节点GPU训练
每台机器上的每个GPU都有一个模型的副本。每台机器获得数据的一部分,并且只在那部分上训练。每台机器都能同步梯度。
如果你已经做到了这一步,那么你现在可以在几分钟内训练Imagenet了!这并没有你想象的那么难,但是它可能需要你对计算集群的更多知识。这些说明假设你正在集群上使用SLURM。
Pytorch允许多节点训练,通过在每个节点上复制每个GPU上的模型并同步梯度。所以,每个模型都是在每个GPU上独立初始化的,本质上独立地在数据的一个分区上训练,除了它们都从所有模型接收梯度更新。
在高层次上:
- 在每个GPU上初始化一个模型的副本(确保设置种子,让每个模型初始化到相同的权重,否则它会失败)。
- 将数据集分割成子集(使用DistributedSampler)。每个GPU只在它自己的小子集上训练。
- 在.backward()上,所有副本都接收到所有模型的梯度副本。这是模型之间唯一一次的通信。
Pytorch有一个很好的抽象,叫做DistributedDataParallel,它可以帮你实现这个功能。要使用DDP,你需要做4的事情:
def tng_dataloader():
d = MNIST()
# 4: Add distributed sampler
# sampler sends a portion of tng data to each machine
dist_sampler = DistributedSampler(dataset)
dataloader = DataLoader(d, shuffle=False, sampler=dist_sampler)
def main_process_entrypoint(gpu_nb):
# 2: set up connections between all gpus across all machines
# all gpus connect to a single GPU "root"
# the default uses env://
world = nb_gpus * nb_nodes
dist.init_process_group("nccl", rank=gpu_nb, world_size=world)
# 3: wrap model in DPP
torch.cuda.set_device(gpu_nb)
model.cuda(gpu_nb)
model = DistributedDataParallel(model, device_ids=[gpu_nb])
# train your model now...
if __name__ == '__main__':
# 1: spawn number of processes
# your cluster will call main for each machine
mp.spawn(main_process_entrypoint, nprocs=8)
然而,在Lightning中,只需设置节点数量,它就会为你处理其余的事情。
# train on 1024 gpus across 128 nodes
trainer = Trainer(nb_gpu_nodes=128, gpus=[0, 1, 2, 3, 4, 5, 6, 7])
Lightning还附带了一个SlurmCluster管理器,可以方便地帮助你提交SLURM作业的正确详细信息。
10. 在单个节点上多GPU更快的训练
事实证明,distributedDataParallel比DataParallel快得多,因为它只执行梯度同步的通信。所以,一个好的hack是使用distributedDataParallel替换DataParallel,即使是在单机上进行训练。
在Lightning中,这很容易通过将distributed_backend设置为ddp和设置GPUs的数量来实现。
# train on 4 gpus on the same machine MUCH faster than DataParallel
trainer = Trainer(distributed_backend='ddp', gpus=[0, 1, 2, 3])
对模型加速的思考
首先,我要确保在数据加载中没有瓶颈。为此,我使用了我所描述的现有数据加载解决方案,但是如果没有一种解决方案满足你的需要,请考虑离线处理和缓存到高性能数据存储中,比如h5py。
接下来看看你在训练步骤中要做什么。确保你的前向传播速度快,避免过多的计算以及最小化CPU和GPU之间的数据传输。最后,避免做一些会降低GPU速度的事情(本指南中有介绍)。
接下来,我试图最大化我的batch size,这通常是受GPU内存大小的限制。现在,需要关注在使用大的batch size的时候如何在多个GPUs上分布并最小化延迟(比如,我可能会尝试着在多个gpu上使用8000 +的有效batch size)。
然而,你需要小心大的batch size。针对你的具体问题,请查阅相关文献,看看人们都忽略了什么!