DL专栏6-Probability Distributions


1. 均匀分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/uniform.py

均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。

2. 伯努利分布(离散)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/bernoulli.py

先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。

利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。

3. 二项分布(离散)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/binomial.py

参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。

二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。

4. 多伯努利分布/分类分布(离散)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/categorical.py

多伯努利称为分类分布。交叉熵和采取负对数的多伯努利分布具有相同的形式。

5. 多项式分布(离散)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/multinomial.py

多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。

6. β分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/beta.py

β分布与二项分布和伯努利分布共轭。

利用共轭,利用已知的先验分布可以更容易地得到后验分布。

当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。

7. Dirichlet 分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/dirichlet.py

dirichlet 分布与多项式分布是共轭的。

如果 k=2,则为β分布。

8.伽马分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/gamma.py

如果 gamma(a,1)/gamma(a,1)+gamma(b,1)与 beta(a,b)相同,则 gamma 分布为β分布。

指数分布和卡方分布是伽马分布的特例。

9. 指数分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/exponential.py

指数分布是 α 为 1 时 γ 分布的特例。

10. 高斯分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/gaussian.py

高斯分布是一种非常常见的连续概率分布。

11. 正态分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/normal.py

正态分布为标准高斯分布,平均值为0,标准差为1。

12. 卡方分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/chi-squared.py

k 自由度的卡方分布是 k 个独立标准正态随机变量的平方和的分布。

卡方分布是 β 分布的特例。

13. t 分布(连续)代码:

https://github.com/graykode/distribution-is-all-you-need/blob/master/student-t.py

t分布是对称的钟形分布,与正态分布类似,但尾部较重,这意味着它更容易产生远低于平均值的值。

更多细节

Relationships among probability distributions - Wikipedia


文章作者: 杰克成
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 杰克成 !
评论
  目录